点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:乐乐彩平台_ (2023已更新(网易/百科)
首页>文化频道>要闻>正文

乐乐彩平台_ (2023已更新(网易/百科)

来源:乐乐彩平台2024-03-27 17:48

  

乐乐彩平台

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******

  相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。

  你或身边人正在用的某些药物,很有可能就来自他们的贡献。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。

  一、夏普莱斯:两次获得诺贝尔化学奖

  2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。

  今年,他第二次获奖的「点击化学」,同样与药物合成有关。

  1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。

  虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。

  虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。

  有机催化是一个复杂的过程,涉及到诸多的步骤。

  任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。

  不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。

  为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。

  点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。

  点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。

  夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。

  大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。

  大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。

  大自然的一些催化过程,人类几乎是不可能完成的。

  一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。

   夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?

  大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。

  在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。

  其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。

  诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。

  他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。

  「点击化学」的工作,建立在严格的实验标准上:

  反应必须是模块化,应用范围广泛

  具有非常高的产量

  仅生成无害的副产品

  反应有很强的立体选择性

  反应条件简单(理想情况下,应该对氧气和水不敏感)

  原料和试剂易于获得

  不使用溶剂或在良性溶剂中进行(最好是水),且容易移除

  可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定

  反应需高热力学驱动力(>84kJ/mol)

  符合原子经济

  夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。

  他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。

  二、梅尔达尔:筛选可用药物

  夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。

  他就是莫滕·梅尔达尔。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。

  为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。

  他日积月累地不断筛选,意图筛选出可用的药物。

  在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。

  三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。

  2002年,梅尔达尔发表了相关论文。

  夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  三、贝尔托齐西:把点击化学运用在人体内

  不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

  诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。

  她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。

  这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。

  卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。

  20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。

  然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。

  当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。

  后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。

  由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。

  经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。

  巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。

  虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。

  就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。

  她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。

  大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。

  在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。

  目前该药物正在晚期癌症病人身上进行临床试验。

  不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。

「  点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)

  参考

  https://www.nobelprize.org/prizes/chemistry/2001/press-release/

  Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

  Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

  Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

  https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

  https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

  Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

女排超级联赛探路前行******

  近日,2022-2023中国女子排球超级联赛决赛在江西上饶落幕。天津队在三场两胜制的决赛中以总比分2比0成功卫冕,获得队史第15个联赛冠军。

  本次联赛自去年11月10日在江苏常州揭幕,持续近两个月。拥有李盈莹、王媛媛、姚迪和王艺竹等多位女排国手,以及强力外援瓦尔加斯的天津女排,在联赛中依然展示出强大的统治力。

  第一阶段循环赛,天津队先后击败了其余13支球队,保持全胜。随后的分组排位赛和淘汰赛,天津女排愈战愈勇,最终以22战全胜的战绩强势夺冠。

  从联赛最终的前8排名来看,竞争格局有一定变化,但并未彻底改变传统秩序。唯一令人感到些许意外的,是仅获得第6名(近7年最差战绩)的江苏女排。队伍青黄不接,张常宁、龚翔宇等国手并未参赛都是导致队伍成绩下滑的直接原因。

  得益于本届排超联赛取消外援数量的限制,有多支球队都引进了多名外援,但最终会师决赛的是各自只引入了一名外援的津、沪两队。

  天津女排的陈博雅和张世琦都是首次代表球队主打联赛,两人均有不俗表现。虽然在一传环节仍有提升空间,但陈博雅多变的进攻手法以及沉着稳定的发挥,让球迷有了更多期待。张世琦在袁心玥缺阵的情况下,与王媛媛共同撑起了队伍的副攻线,表现出独当一面的气质。

  上海女排由仲慧、王唯漪和高意等球员挑起大梁,辅以一众年轻球员,在本赛季联赛掀起一股“青春风暴”。尽管国手不多,但全队展现出的战术素养以及团队合作,令人眼前一亮。尤其是在半决赛的较量中,面对外援较多的深圳女排,上海队年轻球员展现出很强的进攻实力,干净利落地赢得了比赛。

  本次联赛在主攻方面,令人印象深刻的有福建队庄宇珊、江苏队吴梦洁、广东队王逸凡、四川队缪伊雯等。在接应方面,上海队的王音迪和江苏队的周页彤发挥出色。二传方面,上海队的许晓婷表现突出。而在自由人方面,四川队杨玉宁的各项技术统计均位于榜首。

  上述队员中,王逸凡和王音迪年仅17岁,潜力不俗。而吴梦洁、王逸凡、缪伊雯等球员,虽然过去曾经入选过国家队,并非完全意义上的新人,但她们以前在国家队处于相对边缘的位置,此番用稳定表现再度证明自己,有利于国家队人员的有序竞争。

  自1996年推出主客场赛制以来,中国排球联赛已有20多年的发展历程,但与中超、CBA等国内其他“三大球”职业联赛,以及与国际高水平排球联赛相比,排超联赛在影响力、商业化、运营方面均存在着明显差距。

  去年1月,排球联赛改革成为全国排球工作会议的中心议题。业内人士认为,虽然本赛季女排超级联赛并不完善,但仍在积极探索和改革。“只有在加强顶层设计,不断总结改革经验的基础上,兼收并蓄,才能提升联赛水平,早日将排超联赛打造成具备国际影响力的高水平联赛。”

  (文图:赵筱尘 巫邓炎)

[责编:天天中]
阅读剩余全文(

相关阅读

视觉焦点

  • 奥迪e-tron Sportback假想图曝光

  • 团贷网案通报:冻结54亿元 扣押2架飞机和50套房产

独家策划

推荐阅读
乐乐彩平台国资改革重磅文件出台,允许国企开展股权激励
2024-05-15
乐乐彩平台周洁琼素颜现身见粉丝露笑
2023-09-16
乐乐彩平台刀塔自走棋更新英雄戴泽
2024-02-13
乐乐彩平台消息人士:FAA去年曾考虑停飞部分737MAX飞机
2023-09-04
乐乐彩平台陈建周:充满幽默风趣和时代感的齐天大圣
2023-10-17
乐乐彩平台 时话|小长假晒表攻略 赢得轻松简单
2024-03-24
乐乐彩平台第五套人民币将要发行
2023-12-20
乐乐彩平台接受连续100天手机摄影挑战,赢认证称号
2023-09-17
乐乐彩平台微博微信淘宝豆瓣眼中的你,哪个最真实
2023-12-08
乐乐彩平台俄罗斯最美近卫军女战士出炉 57000人投给她(图)
2023-12-21
乐乐彩平台美两艘军舰28日通过台湾海峡,外交部:已向美方表达关切
2024-02-07
乐乐彩平台中俄联合军演俄方参演舰艇抵达青岛
2023-09-16
乐乐彩平台成都市长罗强演唱《我爱你 中国》被赞“帕瓦罗强”
2024-02-11
乐乐彩平台信仰之光
2024-05-28
乐乐彩平台5月新机前瞻:除了华为三星外 还有这些旗舰机可选
2023-08-26
乐乐彩平台留法博士任上被查 曾掌舵中国唯一的科技城
2024-01-10
乐乐彩平台气吹的?彭昱畅腹肌消失,小李子魔鬼训练
2023-08-21
乐乐彩平台 一旦中美爆发冲突,美军至少损失几架F22?
2023-11-13
乐乐彩平台土超队遭遇车祸:捷克国脚苏拉尔离世 西塞等6人受伤
2024-04-30
乐乐彩平台成都大熊猫繁育研究基地再添龙凤胎大熊猫
2024-01-17
乐乐彩平台 女子奔溃报警!自己养的9000块钱宠物鸡,被人偷去下锅!
2023-12-21
乐乐彩平台安倍与特朗普合影被抢走大半C位 日本网友:他好惨啊
2024-01-14
乐乐彩平台注意 中国留学生谨防陷入这些“打折学费”骗局中
2024-03-12
乐乐彩平台那些梦的代价——伍兹VS李昊桐
2024-06-02
加载更多
乐乐彩平台地图